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A theoretical solution for an orthotropic thick cylindrical shell under arbitrary impact
load is presented by making use of the finite Hankel transform and the Laplace transform.
Dynamic formulas for a cylindrically orthotropic problem are derived and results are
obtained for some practical examples, in which an orthotropic thick cylindrical shell is
subjected to a sudden load and an exponential decaying shock pressure. Finally, a dynamic
finite element for the same problem is also carried out by applying the Algor (Super sap)
finite element analysis system. Comparing theoretical solution with finite element solution, it
can be found that two kinds of results obtained by making use of two different solving
methods are suitably approached. Thus, it is further concluded that the method and
computing process of the theoretical solution are effective and accurate.
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1. INTRODUCTION

The analysis and calculation for dynamic stress response of a finite axisymmetric structure
subjected to an arbitrary exterior and interior impact load is a typical elastodynamic problem.
Its practical interest will be found in a wide range of structure analyses with consideration of
the dynamic effects. The research for elastodynamic problem of an isotropic structure has
been studied for many years by several authors using different methods [1-12]. In recent
times, the application of thick composite shells has been continuously increased in some
engineering areas. The elastodynamic problem of thick composite cylindrical shell can be
simplified to the elastodynamic problem of an orthotropic cylindrical shell which is applied in
aerospace, offshore and submarine structure, chemical pipe, pressure vessel and civil
engineering structure. However, if the structure is not isotropic, the cases so far studied are
much fewer in number because the solving process is more complex. In reference [12], the
author numerically investigated the elastodynamic behavior of relatively thick symmetrically
laminated anisotropic circular shells as a plane strain problem by using the first order shear
deformation theory. In reference [13], an elastodynamic solution for an anisotropic hollow
sphere was presented. In reference [ 14], the author presented elastodynamic solution for the
thermal shock stresses in an orthotropic thick cylindrical shell and thought that the
elastodynamic solution for orthotropic cylindrical shell under impact load has not yet been
reported. However, an elastodynamic solution for an orthotropic thick cylindrical shell
under arbitrary impact pressure is very useful in engineering applications. In this paper, the
elastodynamic equation for an orthotropic thick cylindrical shell under arbitrary impact
load is derived and the expression of a theoretical solution is presented. The theoretical
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solution is rigorously derived for an orthotropic cylindrical shell under arbitrary impact
pressure by making use of the method in references [15, 16]. The advantage of theoretical
solution is the ability to provide a closed-form solution being applicable to an arbitrary
impact function.

Some practical examples are considered for an orthotropic cylindrical shell under
a uniform sudden load and an exponential decaying shock. The feature of the solution is
related to the propagation of the orthotropic cylindrical wave. The histories of the dynamic
stress are given and discussed respectively.

In order to further prove that the method and computing process of the theoretical
solution are effective and accurate, a dynamic finite element solution for the same problem
is also carried out by using the Algor (Super sap) finite element analysis system. Comparing
the results of the theoretical solution with the Algor solution, it can be found that two kinds
of results obtained by making use of two different methods are approached very well.

2. ORTHOTROPIC ELASTODYNAMIC EQUATION AND SOLUTION

The geometry and co-ordinate of orthotropic cylindrical shell is shown in Figure 1. z, r
and 0 represent the axial, radial and tangential variables, respectively.

Consider that an orthotropic cylindrical shell is acted on by an impact internal and
external pressure pq(t), p,(t) distributed uniformly over the surface. According to the
geometry of shell and the property of impact load, the orthotropic elastodynamic problem
studied in the paper is considered as axisymmetric. Thus, all shear deformation and shear
stresses are zero. Introducing the engineering constants, the generalized Hooke’s law is
written as

&y S11 S12 S13| |0k
o) =1|S12 S22 S23|4{0¢)> (1)
&z S$13 S23 833 |02

where

s11 = 1/E, S12 = — Var/Ey, s13 = — v, /E.,

S22 = 1/E,, S23 = — Vo /E., s33 = 1/E., (2
Considering the orthotropic cylindrical shell as plane strain and utilizing the property of
axisymmetric problem, the corresponding geometry relation and formulas (1), (2) make the

distribution of stress and displacement depend only on the radial variable r and the time
variable t. Thus, the single radial component of displacement is shown as U = U (r, t) and

-

Figure 1. The geometry and co-ordinate of orthotropic shell.
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the stress field is shown as

r C C >
a 11 or 12
ou(r, t UGr,t
9= Ci, 6( )+C22 ( ),
r
au(r, t) U(rt)
UZZC13T+C23—’ (3)
r r
where
Ci1 = (522533 — S%s)/sy Cir = — (512533 — $23513)/5,
Ci3 = (512523 — $22513)/5, Cyy = — (511523 — S12513)/5,
Cr3 = — (511523 — $12513)/s, C33 = (511522 — 5%2)/5,
s = |Sij|- 4)

The elastodynamic equation in terms of displacement U of orthotropic cylindrical shell
under an arbitrary impact load is shown as

U1, 100G Coa U _ 1 UG )

22 = 5
61‘2 r or Cll 7'2 CZ atz ( a)
where C = ,/C;/p and p represent wave speed and density respectively.
Boundary conditions and initial conditions are expressed as
ou(r,t U(r,t t
G,y =g = [cn "0, ¢, Y0 )} _nl) (5b,c)
r=b or =5 pa(t)
ou(rt
U(I‘, 0) = U0> a(:, ) = VO' (Sdse)
Suppose that
U(rs t) = Ul(r> t) + UZ(r> t)a (6)

where U, is a quasi-static solution of the basic equation (5a), which satisfies the following
homogeneous equation and inhomogeneous boundary conditions

0*U(r, 1) " 1oU(r 1)  Cpr Uy(rt)

0 7
or? r o or C, r? ’ (72)

|:C11 U, (r, 1) s Ulir, t):| _ p1(0) (7b,c)

ar 12 r=a,b _pZ(t),
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The exact solution for equation (7) is obtained by [15]

Ui(r, 1) = @1(n)p1(1) + @2(r)pa(2), (8a)
where
_ gR¥1
_ R -R — o R -R _
P1(r) =gir” + gor ™7, Pa2(r) = gar" + gar™ ", &1 (CiR + Cpo)(1 — @2RpF- T
_ _ gR+t
& (Ci2 —C1R)(1 _gizR)biRil’
g=—g1g Y, ga=—ggt!
R =./Cy,/Cyy, g=a/b (8b-f)

Substituting equation (6) into equation (5) and utilizing equation (7) yields an
inhomogeneous dynamic equation with homogeneous boundary conditions and initial
conditions for U, (r, t):

QUL 1) 10U, Uyt 1 [2Usr ) 02U, (1)
9 - b _ R2 9 I b b 10
or? + roor 2 C? ot? ot? ’ (10a)
oU t C
AULINECTER Y (10b,0)
or VC11 r=a,b
U,(r,0) = Uy — Uy(r, 0), Uz(", 0)="V— Ul(", 0). (10d,e)

Here U, (r, t) is the known function shown in equatins (8). The exact solution for equation
(10) can be obtained by using the Hankel transform and the Laplace transform [13, 16].
The finite Hankel transform of U,(r, t) is defined as

b

Us(E 1) = HIUs(r, )] = f FUs (. ) M(&, 1) dr. (11)

a

Taking the inverse transform of equation (1) gives
Ustr.t) = X FGIM(E UG (12)

where
FE) =1 / | M T dr, (13)

M(Er)=Jr(Er)Y, — Yr(&Er)J, (13b)
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Y, = & Yr(&a) + h, Y r(&a), Jo = &JIR(Ea) + hoJr(Ea),

Y, = & YR(ED) + hy YR(ED), Jp = &I R(ED) + hy Jr(E:D) (13c)

in which Jz(&;r) and Yg(&r) are the first and second kinds of R order Bessel functions
respectively. R is the known value in equation (8f) and &; (i = 1, 2, 3,...) is a series of positive
roots for the following eigenequation:

Yan - Yb‘]a = 0 (14)
The natural frequency

Performing the finite Hankel transform to equation (10a) and utilizing the homogeneous
boundary conditions (10b, ¢) gives

— &0, 1) (16)

_ L [d0(& 0 42U,
S dre e

Taking the Laplace transform of equation (16) and utilizing the initial condition (10d, )
gives

2 (7%
Tk (F N TTR(E. W; T (£ 14 T* (& VE(E) 17
U2 (én p) Ul (éu P) + wlz ¥ pz Ul (én p) + CU12 + pz 0(51) + CULZ + p2~ ( )
The inverse of Laplace transform to equation (17) gives
S ‘ . _ Vo(&) .
U (& 1) = — Ur(&it) + ; | Uq(Sp, Dsinay(t — 1) dr + Ug(&;) cos(wit) + sin(w;t),
0 ;
(18a)

Substituting equation (8a) into equation (18a) gives

U2(& 1) = @i(E)T1i(Ei ) + @i(ET2i(E 1) 4+ Up(&;) cos(w;t) + Vo(éi)£5in(wit)a (18b)

13

where
t

6t = = i) + 04 | piOsin( ~ 0
0

@i(&) = H[g; ()], j=1,2. (19a, b)

Substitution of equations (18b) and (13) into equation (12) yields the solution U,(r, t) of
equation (10).

Substituting equations (8), (12) into equation (6), the solution of the basic equation (5) can
be exactly described as

U(r, 1) = @1 (r)p1 (1) + @2(r)pa(t) + Z F(E)M (& Uy (&, 1) (20)

The corresponding dynamic stress field can also be easily found out from formula (3).
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3. REAL EXAMPLES OF THEORETICAL SOLUTION

Assume that only the internal boundary of an orthotropic cylindrical shell is subjected to
a dynamic load p; (¢):

pi(t) = —pexp(—at), t=0". (21)
The initial conditions are
Uo(r, 0) = Vo(r, 0) = 0. (22)

Substituting equations (21) and (22) into equation (20), and applying equations (8) and (18),
one can reduce the solution of the field equation (5) to

Ur, 1) = — plei(re ™ — Z P1(E)F(E)M(S)Gi(D)], (23a)
where
Gilt) = ole ™™ — ow; sizn(wit)z—i- w? cos(w;t) (23b)
o + w;

Substituting formula (23) into formula (3) yields the corresponding dynamic stress field.

In solution (23), when « equals zero, the dynamic load p,(t) is a sudden uniform pressure
form. When « is not equal to zero, the dynamic load p{(t) becomes an exponential decaying
shock pressure. In this case, o = 500. The computing constants are specified as
E.=E.,=200Gpa, E,=225E,v,4=025 v,=0.25 uv,=0.167, and the density
p = 5076 kg/m3. Two structures with b/a = 20 and 2, are computed and the results are
shown in Figures 3 and 4 and 5 and 6 respectively. The non-dimensional variables 6; = a,/p,
T =tC/aor T =tC/(b—a),Rl =(r —a)/aor R1 = (r — a)/(b — a) are used. ® in the figure
expresses the results under static loads.

4. DYNAMIC FINITE ELEMENT CALCULATION

In this chapter, in order to prove further the validity of the theoretical method and the
solving process, a dynamic finite element solution for the same example used in the
theoretical solution is also achieved by applying the Algor (Super sap) finite element
analysis system.

In this dynamic equation of elastic system, applying the Halmiton principle, the dynamic
equation of finite element is written as

[K1{d} + [M1{d} = {F(1)}, (24)

where [K] is the stiff matrix, [M] is the weight matrix, {d} is the displacement of the knot
point and {F(t)} is the dynamic load. In the solving process of the dynamic finite element,
applying a direct integral method, the solution of the dynamic equation (24) can be obtained
in reference [17]. Considering the practical structure shown in Figure 1 as axisymmetry
and plane strain problem, the finite element model and net can be simplified as shown in
Figure 2.
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Figure 2. The element net of the computing model.
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Figure 3. The histories of the radial stress and tangential stress in an orthotropic thick cylindrical shell with
b/a = 20, under a sudden impact load (¢ = 0): @ static solution.

The geometry size and material property are the same as those in the theoretical solution.
The finite element net is taken as the axisymmetrically orthotropic rectangular element of
4 knot points. The knot points at AC side and BD side are constrained in the z direction. In
order to make the dynamic finite element solution show a stress wave feature and a strong
discontinuity effect at the wavefront, we take 95 elements, and 380 elements along radius r of
cylindrical shell, respectively. Calculating time step 4t = 0-025a/C is taken.

5. RESULTS AND DISCUSSIONS

1. The histories and distributions of the dynamic stresses in an orthotropic cylindrical
shell under a sudden impact interior pressure (o« = 0) are shown in Figures 3 and 4. In order
to have a confirmation of the validity of the solution, a special case in b/a = 20, and
computing time T = tC/a < 20 are taken. When the computing time T < 20, that is before
the wavefront of stress wave arrives at the exterior boundary r = b, reflected waves have not
been produced. In the above case, the histories of radial stress and tangential stress at r = a,
2a and 3a are shown in Figure 3 respectively. The curves in Figure 3 have clearly shown the
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Figure 4. The histories of the radial stress and tangential stress in an orthotropic thick cylindrical shell with
b/a = 2, under a sudden impact load (¢ = 0): @ static solution.

features of the compression waves propagating in the cylinder upon the application of the
interior pressure. The radial stress G, at r = a is equal to — 1, which satisfies the interior
boundary condition. The radial stress at other points is essentially zero before the arrival of
the wavefront. A discontinuity at the wavefront and oscillations behind the wavefront
respond to the sudden applied pressure. The propagation of the wavefront decays and the
dynamic stress approaches to the static stress at the same point when time is large and the
effect of reflected dose not appear. Because of the effects of the strong discontinuities, the
sign of the tangential stress at the wavefront is reversed as compared to that of the static
stress.

Figure 4 gives the computing results of an orthotropic cylindrical shell with b/a = 2.
Because of the small wall thickness, the effect of wave reflected between the inner wall and
outer wall on dynamic stresses must be considered. Except the radial stress at inner
boundary where 6, = g,/p = — 1, as shown in Figure 4a curve R1 = 0, the stress at other
points oscillates dramatically around the static stress. The histories of the radial and
tangential stresses at » = a are shown in the (a) and (b) parts of Figure 4 respectively. It
should be mentioned that the maximum amplitude of the tangential stress at r = a is much
larger than that of the radial stress at r = g; this because the tangential stiffness is much
larger than the radial stiffness of an orthotropic cylindrical shell.
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Figure 5. The histories of the radial stress and tangential stress in an orthotropic thick cylindrical shell with
b/a = 20, under an exponential impact load (x = 500): 4 static solution.
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Figure 6. The histories of the radial stress and tangential stress in an orthotropic thick cylindrical shell with
b/a = 2, under an exponential impact load (x = 500): 4 static solution.
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Figure 7. The dynamic stresses of the finite element solution with 95 element nets and theoretical solution for an
orthotropic hollow cylinder under a sudden impact load (« = 0). b/a = 20. —— Algor solution; ------- theoretical
solution.

2. The histories and distributions of the dynamic stress in an orthotropic cylindrical shell
under an exponential decaying impact load (« = 500) are shown in Figures 5 and 6. It is seen
that the response features of dynamic stress in an orthotropic cylindrical shell under an
exponential decaying impact load (x = 500) are similar to those given by Figures 3 and 4. In
Equation (20), it is seen that the solution is composed of an orthotropic static solution and
a dynamic solution with homogeneous boundary conditions. The effects of reflected wave
mean that the histories of stress oscillate dramatically around the static stress. The
oscillating amplitude of the stress mainly depends on the loading rate, but not the loading
amplitude. On the other hand, from o = 0 to 500, the source spectrum is effectively changed
only as time ¢ increases dramatically. At t = 0, the loading amplitude for « = 0 is the same
as that for a = 500. Considering the above reasons the results in Figures 3-6 have only
a small difference when the computing time ¢ is less, and the loading rate is the same.

3. In order to prove further the validity of the theoretical method and solution, a finite
element solution for the same problem under sudden impact load is also obtained by using
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Figure 8. The dynamic stresses of the finite element solution with 380 element nets and theoretical solution for
an orthotropic hollow cylinder under a sudden impact load (« = 0). b/a = 20. ------- theoretical solution; ——
Algor solution.

Algor (Super sap) finite element analysis system. Figures 7 and 8 give two computing
results by using the finite element program for the 95- and 380-element nets along radius r,
which approach the theoretical solution at the wavefront with an increase in element net of
shell. Thus, the wave property of the dynamic finite element solution is related to the
number of element nets along the direction in wave propagation and the length of
computing time step.

From the above, one concludes that the present closed solution is valid theoretically and
may be used as a reference to solve other dynamic problems.
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